满足不同角色需求: 领域专家 数据科学家 科研人员、高校教师及学生
The PatchCamelyon benchmark dataset (PCAM)
1299次浏览 dataju 于 2021-08-16 发布
该内容是由用户自发提供,聚数力平台仅提供平台,让大数据应用过程中的信息实现共享、交易与托管。如该内容涉及到您的隐私或可能侵犯版权,请告知我们及时删除。
数据集概述

https://academictorrents.com/details/1561a180b11d4b746273b5ce46772ad36f1229b6

Abstract:

The PatchCamelyon benchmark is a new and challenging image classification dataset. It consists of 327.680 color images (96 x 96px) extracted from histopathologic scans of lymph node sections. Each image is annoted with a binary label indicating presence of metastatic tissue. PCam provides a new benchmark for machine learning models: bigger than CIFAR10, smaller than imagenet, trainable on a single GPU.

Why PCam

Fundamental machine learning advancements are predominantly evaluated on straight-forward natural-image classification datasets. Think MNIST, CIFAR, SVHN. Medical imaging is becoming one of the major applications of ML and we believe it deserves a spot on the list of go-to ML datasets. Both to challenge future work, and to steer developments into directions that are beneficial for this domain.

We think PCam can play a role in this. It packs the clinically-relevant task of metastasis detection into a straight-forward binary image classification task, akin to CIFAR-10 and MNIST. Models can easily be trained on a single GPU in a couple hours, and achieve competitive scores in the Camelyon16 tasks of tumor detection and WSI diagnosis. Furthermore, the balance between task-difficulty and tractability makes it a prime suspect for fundamental machine learning research on topics as active learning, model uncertainty and explainability.



URL: https://github.com/basveeling/pcam
License: No license specified, the work may be protected by copyright.


数据集详情
暂无
数据集元数据
暂无
概念层次
领域场景: 未指定
领域问题: 未指定
领域应用: 未指定
应用案例: 未指定