目前平台处于试运行阶段,如有任何问题或建议,请发送邮件至 service@dataju.cn 或加入QQ群 565136792 联系管理员。

满足不同角色需求:领域专家 数据管理者 数据科学家 科研人员、高校教师及研究生 数据分析爱好者
Deep Learning Face Attributes in the Wild
145次浏览 dataju 于 2021-08-16 发布
该内容是由用户自发提供,聚数力平台仅提供平台,让大数据应用过程中的信息实现共享、交易与托管。如该内容涉及到您的隐私或可能侵犯版权,请告知我们及时删除。
数据集概述

https://academictorrents.com/details/51ebeaabf2d9781d6c000cf3e23c46cd4ac1e425

Tags: facecelebrityAbstract:

Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.

Dataset

CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including

  • 10,177 number of identities,
  • 202,599 number of face images, and
  • 5 landmark locations, 40 binary attributes annotations per image.

The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face detection, face landmark (or facial part) localization and face synthesis.

# Abstract Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts. # Dataset *CelebFaces Attributes Dataset (CelebA)* is a large-scale face attributes dataset with more than *200K* celebrity images, each with *40* attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including - *10,177* number of *identities*, - *202,599* number of *face images*, and - *5 landmark locations, 40 binary attributes* annotations per image. The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face detection, face landmark (or facial part) localization and face synthesis.


License: 

CC-BY-NC


数据集详情
暂无
数据集元数据
暂无
概念层次
领域场景: 未指定
领域问题: 未指定
领域应用: 未指定
应用案例: 未指定

目前平台处于试运行阶段,如有任何问题或建议,请发送邮件至 service@dataju.cn 或加入QQ群 565136792 联系管理员。