满足不同角色需求: 领域专家 数据科学家 科研人员、高校教师及学生
Stanford Drone Dataset
1601次浏览 dataju 于 2021-08-16 发布
该内容是由用户自发提供,聚数力平台仅提供平台,让大数据应用过程中的信息实现共享、交易与托管。如该内容涉及到您的隐私或可能侵犯版权,请告知我们及时删除。
数据集概述

https://academictorrents.com/details/01f95ea32e160e6c251ea55a87bd5a24b23cb03d

Abstract:

When humans navigate a crowed space such as a university campus or the sidewalks of a busy street, they follow common sense rules based on social etiquette. In order to enable the design of new algorithms that can fully take advantage of these rules to better solve tasks such as target tracking or trajectory forecasting, we need to have access to better data. To that end, we contribute the very first large scale dataset (to the best of our knowledge) that collects images and videos of various types of agents (not just pedestrians, but also bicyclists, skateboarders, cars, buses, and golf carts) that navigate in a real world outdoor environment such as a university campus. In the above images, pedestrians are labeled in pink, bicyclists in red, skateboarders in orange, and cars in green.

CITATION

If you find this dataset useful, please cite this paper (and refer the data as Stanford Drone Dataset or SDD): A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes in European Conference on Computer Vision (ECCV), 2016.



URL: http://cvgl.stanford.edu/projects/uav_data/
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License


数据集详情
暂无
数据集元数据
暂无
概念层次
领域场景: 未指定
领域问题: 未指定
领域应用: 未指定
应用案例: 未指定